Journal of Organometallic Chemistry, 358 (1988) 185-214 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

Review

The coordination chemistry of electron-rich alkenes (enetetramines)

Michael F. Lappert

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ (Great Britain) (Received July 14th, 1988)

I. Introduction

In 1975 we reviewed for this Journal "The Coordination Chemistry of Bivalent Group IV Donors; Nucleophilic-Carbene and Dialkylstannylene Complexes" [1]. A major topic concerned (nucleophilic) carbenemetal complexes I, where M represents a transition metal and L_n the sum of all the other ligands, except the (nucleophilic) carbene moiety $\ddot{C}XY$ (X and/or Y being a dialkylamino group),

within the inner coordination sphere of M. The scope was restricted to those compounds I which are accessible directly from an organic precursor (the carbenoid), this having been the pivotal theme of our researches on carbenemetal complexes. Of the various methods for obtaining such complexes I, we had particularly studied those in which the carbenoid is the enetetramine II, or, more rarely, III.

(II) (abbreviated as L^{R}_{2}) (III) [abbreviated as $(L_{s}^{Me})_{2}$]

The principal aim of this article is to bring up to date the story relating to the transition metal coordination chemistry of enetetramines II (and their syntheses, structures, and reactions, especially as reducing agents) and of the related compounds III-IX, VI-IX being optically active. Section II provides a summary of

(abbreviated as $[L^{CH}2^{R}]_{2}$) or $[L^{CH}2^{R'}]_{2}$

work published between 1975 and mid 1988, while Section III briefly outlines some unpublished work from our laboratories. The most recent comprehensive review of carbenemetal chemistry is that of ref. 2.

It is widely held (but see ref. 3) that bonding distinctions can be made between (i) "Fischer-type" complexes, of which the archetype is $[Cr(CO)_5{C(OMe)Ph}]$, and (ii) "Schrock-type", exemplified by $[Ta(CH_2Bu^t)_3{C(Bu^t)H}]$. This classification is useful, in that it draws attention to the fact that complexes (i) are formally derived from a (soft) nucleophilic carbene, and are susceptible to nucleophilic attack at C_{carb} (e.g., by OMe/NMe₂ exchange); whereas complexes (ii) are formally derived from a

Table 1 Carbenemetal complexes from electron-rich alkenes

M ⁿ	Complex	Ref.
Cr ⁰	$[Cr(CO)_{5}(L^{R})] (R = Me \text{ or } Et)$	34, 48
	$[Cr(CO)_{\varsigma}(L'^{Me})]$	34
	$[Cr(CO)_4(L)(L^{Me})]$ (L = AsPh ₃ or C(OMe)Me)	34
	cis- or trans-[Cr(CO) ₄ (L^R) ₂] (R = Me or Et)	34
	$fac-[Cr(CO)_{3}(L_{2})(L^{Et})] (L_{2} = {P(OPh)_{3}}_{2}, dmpe, or dppe)$	47
	$[Cr(\eta - C_6 H_6)(CO)_2(L^{Me})]$	34
Cr ^I	$[Cr(CO)_4(L^{Et})_2][BF_4]$	47
	$[Cr(CO)_{3}(L_{2})(L^{Et})][BF_{4}] (L_{2} = {P(OPh)_{3}}_{2}, dmpe, or dppe)$	47
	$[Cr(CO)_{3}(dmpe)(L^{Et})]Cl$	47
	$[Cr(CO)_{3}(dmpe)(L^{Et})_{2}(PPh_{3})][BF_{4}]$	47
	$[Cr(CO)_2(dmpe)(L^{Et})(PPh_3)][BF_4]$	47
	$[Cr(CO)(dmpe)_2(L^{E_1})][BF_4]$	47
<u>М</u> " Сг ¹ Мо ⁰ Мо ¹¹ W ⁰ W ¹¹ Mn ¹ Fe ⁻¹¹	$[Mo(CO)_5(L^R)]$ (R = Me, Et, Bu, or CH ₂ Ph)	23, 31, 47
	$[Mo(CO)_5(L'^{Me})]$	29, 31
	$cis-[Mo(CO)_4(L)(L^{Me})]$ (L = py, PPh ₃ , or C(OMe)Me)	29, 31
	$[Mo(CO)_4(L^{Et})(PCy_3)]$	29, 31
	cis- or trans-[Mo(CO) ₄ (L^R) ₂] (R = Me, Et, or CH ₂ Ph)	23, 29, 31, 54, 66
	$fac-[Mo(CO)_{3}(L_{2})(L^{Et})](L_{2} = \{P(OMe)_{3}\}_{2} \text{ or dppe})$	29, 31
	$[M_0C_p(C_0)(L^R)(N_0)](R = Me, CH_2Ph, or p-T_0])$	29. 31
	$[M_0C_0(CO)(L'^{Me})(NO)]$	31
	$[Mo(I)_2(L^{Me})_2(NO)_2]$	1
Mo ^{II}	$[Mo(I)_2(CO)_3(L^{Me})_2]$	29, 32
	$[Mo(X)_2(CO)_2(L^R)_2]$ (X = Cl, Br, or I; R = Me or Et)	29, 32
	$[Mo(OSO_2CF_3)_2(CO)_2(L^{Et})_2]$	10
W ⁰	$[W(CO)_5(L^R)]$ (R = Me, Et, or CH ₂ Ph)	32, 47
$\begin{bmatrix} MoCp(CO)(L'^{Me})(NO) \\ [Mo(I)_2(L^{Me})_2(NO)_2 \end{bmatrix} \\ Mo^{II} \qquad \begin{bmatrix} Mo(I)_2(CO)_3(L^{Me})_2 \\ [Mo(X)_2(CO)_2(L^R)_2] (X = CL, Br, or I; R = Me or B \\ [Mo(OSO_2CF_3)_2(CO)_2(L^{Et})_2] \end{bmatrix} \\ W^0 \qquad \begin{bmatrix} W(CO)_5(L^R) \\ [W(CO)_5(L'^Me) \end{bmatrix} (R = Me, Et, or CH_2Ph) \\ \begin{bmatrix} W(CO)_5(L'^{Me}) \\ [W(CO)_4(L^R)_2] (R = Me, Et, or CH_2Ph) \\ trans-[W(CO)_4(L^{Me})_2] \\ fac-[W(CO)_4(L^{Me})_3] \\ cisieW(CO)_4(L^Me) \end{bmatrix} (I = PB_{11} - C(OEt)Me \text{ or } C(I) \end{bmatrix} $	$[W(CO)_5(L'^{Me})]$	32
	cis-[W(CO) ₄ (L ^R) ₂] (R = Me, Et, or CH ₂ Ph)	32
	trans- $[W(CO)_4(L^{Mc})_2]$	32
	$fac-[W(CO)_3(L^{Me})_3]$	32
	cis-[W(CO) ₄ (L)(L ^{Me})] (L = PBu ₃ , C(OEt)Me, or C(OEt)Ph)	32
	cis-[W(CO) ₄ (L)(L ^R)] (L, R = PBu ₃ , Me or PEt ₃ , Et)	32
	$fac-[W(CO)_3(L)(L^{Me})_2](L = py \text{ or } P(OMe)_3)$	32
	$fac-[W(CO)_3(L^{Et}){P(OR)_3}] (R = Me \text{ or } Ph)$	32
W ¹¹	$[W(X)_2(CO)_4(L^{Me})] (X = Br \text{ or } I)$	32
	$[W(I)_2(CO)_n(L^R)_2]$ (n = 2 or 3, R = Me or Et)	32
	$[L^{\text{Et}}-H][W(\text{Br})_3(\text{CO})_3(L^{\text{Et}})]$	1
Mn ^I	$[Mn(\eta-C_5H_4Me)(CO)_2(L^{Me})]$	35
	$fac-[Mn(Br)(CO)_3(L^{Me})_2]$	35
Fe ⁻¹¹	$[Fe(CO)(L^{Me})(NO)_2]$	35
	$[Fe(L^R)_2(NO)_2](R = Me \text{ or } CH_2Ph)$	35
	$[Fe(L^{Me})(NO)_2(PPh_3)]$	35
Fe ⁰	$[Fe(CO)_4(L^R)]$ (R = Me, Et, or CH ₂ Ph)	35, 50, 55
	trans-[Fe(CO) ₃)(L^{Me}) ₂]	35, 55
	trans-[Fe(CO) ₃ (L)(L^{me})] (L = PEt ₃ , PPh ₃ , PEt ₂ Ph, PHPh ₂ ,	
	$P(OPh)_3$, PCy_3 , PMe_2Ph , $PMePh_2$, or $AsPh_3$)	35, 55, 65
	trans-[{ $Fe(CO)_3(L^{Me})$ } ₂ (μ -dppe)]	35, 55

continued

Table 1 (continued)

M″	Complex	Ref.
Fe ^I	$[Fe(CO)_3(L^{Me})_2][BF_4]$	30, 55
	$[Fe(CO)_3(L)(L^{Me})[BF_4]]$	
	$(L = PEt_3, PEt_2Ph, PPh_3, PHPh_2, or P(OPh)_3)$	30, 55
	$[Fe(CO)_2(L)(L^{M*})_2][BF_4](L = PFn_3 \text{ or } P(OPn)_3)$ $[Fe(CO)_2(L)(L^{M*})[BF_1](L = PFt - PPh - or P(OPh)_3)$	30 55
	$[Fe(CO)_2(L)_2(L)_3]$ [Fe(CO)_4(I^{Me})/Pf(a)/P(OPh)_3)/RF(1)	50, 55
	$[Fe(CO)L^{Me}]_{2}{P(OPh)_{2}}_{2}[BF_{4}]$	55
	$[{Fe(CO)_3(L^{Me})}_2(\mu-dppe)][BF_4]_2$	30, 55
	$[Fe(L^{Me})_2(NO)_2][BF_4]$	55
	$[Fe(CN)(CO)_2(L^{Me})(PPh_3)]$	55
	$[\{FeCp(CO)_3(L^R)\}_2] (R = Me \text{ or } Et)$	35, 55
	$[(CO)_3 FeC(L^{Me})C(R)Fe(CO)_3(PPh_2)] (R = Bu^t \text{ or } Ph)$	42
	$[Fe(CO)_2(L^{me})(C \equiv CBu^{\prime})Fe(CO)_3(PPh_2)]$	42
Fe ^{II}	$[Fe(I)_2(CO)_2(L^{Me})_2]$	35
	$[Fe(Br)(\eta-C_3H_5)(CO)_2(L^{Me})]$	55
Ru ⁻¹¹	$[Ru(L^{Et})(NO)_2(PPh_3)]$	41
D ,10	$[\mathbf{P}_{11}, (\mathbf{CO}), (\mathbf{I}^{\mathbf{Et}})]$	35
Ku	$[\operatorname{Ru}(I, \operatorname{Me}), (\operatorname{NO})]C]$	41
	$[\operatorname{Ru}(\operatorname{Cl}(\operatorname{L}^{\operatorname{CH}_2\operatorname{Ph}})_2(\operatorname{NO})]$	41
	$[RuCl(CO)(L^{CH_2Ph})_2(NO)]$	41
	$[Ru(Cl)(L^{CH_2Ph})_2(NO)_2][BF_4]$	1
Ru ^{II}	trans-[Ru(Cl) ₂ (L^{R}) ₄] (R = Me, Et, or CH ₂ Ph)	27, 40, 61
	$[\operatorname{Ru}(\operatorname{Cl})_2(\operatorname{L}^R)_3] (R = \operatorname{Me} \text{ or } \operatorname{Et})$	40
	$[\operatorname{Ru}(I)_2(L^{\operatorname{Me}})_3]$	40
	$\frac{\operatorname{cus}_{[\operatorname{Ru}(\operatorname{Cl})_2(\operatorname{CO})_2(\operatorname{L}^{\operatorname{Ru}})_2]}{\operatorname{cus}_{[\operatorname{Lus}_{[\operatorname{CO}]}(\operatorname{CO})_2(\operatorname{L}^{\operatorname{Ru}})_2]}$	40
	cis- and trans-[$Ru(CI)_2(CU)(L^{-1})_3$] trans [$Pu(CI)(COVI M^{\alpha})_1CI$]	40
	trans-[Ru(Cl)(\mathbb{C})(\mathbb{P}_{4}): (PE)]X (X = Cl or [BE.])	27, 40, 41
	trans-[Ru(Cl)(CO)(L^{Me}) ₂ (pv) ₂ [Cl	40
	$[Ru(Cl)(X)_2(L^{CH_2Ph})_2(NO)](X = Cl, Br, or I; or X_2 = MeI)$	41
	trans-[Ru(Cl)(L^{Me}) ₄ (NO)]X ₂ (X = [BF ₄] or [ClO ₄])	41
	$[\overline{\operatorname{Ru}(\operatorname{Cl})(\operatorname{L}^{\operatorname{Tol}-p})}(\operatorname{PR}_3)_2] (\operatorname{R} = \operatorname{Et} \text{ or } \operatorname{Ph})$	28, 46, 61
	$[\underline{R}^{i}\underline{u}(\underline{C}\underline{l})\underline{L}^{T^{i}\underline{b}\underline{l}-p})(\underline{PPhR}_{2})_{2}](R = H, Et, or Bu^{i})$	46
	$[\mathbf{R}'_{u}(\mathbf{I})(\mathbf{L}^{Tol_{P}})(PPh_{3})_{2}]$	46
	$[\dot{Ru}(Cl)(L^{\dot{Ph}})(PR_3)_2]$	46
	$\mathbf{R} = \mathbf{E}\mathbf{t}$ or $\mathbf{P}\mathbf{h}$	
	$[\dot{Ru}(Cl)(L^{Ph})(PBu_2Ph)_2]$	46
	$[R_{u}^{u}(I)L^{Ph})(PPh_{3})_{2}]$	46
	$[R^{u}(Cl)(L^{A^{n-p}})(PPh_{3})_{2}]$	46
	$[\mathbf{R}_{u}^{l}(\mathbf{Cl})(\mathbf{L}^{T_{ol-P}^{l}})(\mathbf{L}^{Et})(\mathbf{PPh}_{3})]$	28, 46
	$[Ru(Cl)(L^{Ar})(CO)(PR_3)_2] (Ar = Ph and R = Et, Bu, or Ph;$	
	Ar = p-Tol and $R = Et$ or Ph; $Ar = p$ -An and $R = Ph$)	28, 46
	$[Ru(Cl)_2(L^{OOP})(NO)(PPh_3)]$	46
	$[Ru(CI)(L^{10FP})(NO)(PR_3)_2][PF_6](R = Et \text{ or } Ph)$	46
	$[\operatorname{Ru}(\operatorname{Cl})(\operatorname{L}^{10i-p})(\operatorname{PF}_3)(\operatorname{PR}_3)] (\mathbf{R} = \operatorname{Et} \text{ or } \operatorname{Ph})$	46
	$[\operatorname{Ru}(\operatorname{Cl})(\operatorname{L}^{\operatorname{Ar}}){\operatorname{P}(\operatorname{OMe})_3}_3] (\operatorname{Ar} = \operatorname{Ph} \text{ or } p\text{-}\operatorname{Tol})$	46
	$[\operatorname{Ru}(\operatorname{Cl})(L^{\operatorname{loi-}p})(\operatorname{PPh}_3)(\operatorname{dppe})]$	46
	$[Ku(Cl)_2(CO)(L^*)(PPh_3)_2]$	69 17
	$[\mathbf{R}\mathbf{u}_{2}\mathbf{C}]_{3}(\mathbf{L}^{Et})_{6}[\mathbf{C}]$	27
	· · · · · · · · · · · · · · · · · · ·	

М″	Complex	Ref.
Os ^{II}	trans- $[Os(Cl)_2(L^{Me})_4]$	40
	$[Os(Cl)_2(L^{CH_2Pb})_3(NO)]Cl$	41
	[Os(L ^{Me}) ₄ (NO)]Cl	41
	trans-[Os(Cl)(L^{CH_2Ph})(NO)]X ₂ (X = Cl or [BF ₄])	41
Co ⁻¹	[Co(CO) ₂ (L ^{Me})(NO)]	35
	$[Co(CO)(L^{R})_{2}(NO)] (R = Me \text{ or } Et)$	35
	$[Co(CO)(L)(NO)(PPh_3)] (L = L^{Et} \text{ or } MeL^{\star Me,Me})$	35, 63
Col	[Co(η-C ₅ H ₅)(CO)(L ^{Me})]	68
Co ^{II}	$[Co(\eta-C_5H_5)(SPh)(L^{Me})]$	68
CoIII	$[Co(\eta - C_{\epsilon}H_{\epsilon})Me(L^{Me})][BF_{\delta}]$	68
	$[Co(\eta - C_5H_5)(I)_2(L^{Me})]$	68
Rh ^I	trans-[Rh(Cl)($L^{\mathbb{R}}$)(PPh ₃) ₂] (R – Me, CH ₂ Ph, Ph, p-Tol,	
	or <i>p</i> -An)	8, 61, 62
	$trans-[Rh(Cl)(L'^{Me})(PPh_3)_2]$	62
	$[Rh(Br)(L^{R})(PPh_{3})_{2}]$ (R = Me or p-Tol)	62, 74
	$[Rh{N:C(CF_2)}](L^R)(PPh_2)](R = Me \text{ or } p\text{-Tol})$	12
	trans- $[Rh(C Y L^{Me} XasPh_{2})_{2}]$	76
	trans-[Rh(Cl)(CO)($L^{\mathbb{R}}$)(PPh ₃)] (R = Me, Et, CH ₂ Ph, p-Tol,	
	or <i>p</i> -An)	19, 62
	$trans-[Rh(Cl)(CO)(L'^{Me})(PPh_{1})]$	62
	trans-[Rh(Cl)(CO)(L)(L^{CH_2Ph})] (L = PEt ₃ , PMe ₂ Ph, PMePh ₂ ,	
	or PCy _a)	75
	trans-[Rh(Cl)(CO)(L^{R}),] (R = Me. Et. or CH ₂ Ph)	19. 38. 61. 75. 78
	trans-IRh(Cl)(CO)(L ^{Me})	75
	$trans-[Rh(Cl)(CS)(L^{CH_2Ph})_2]$	75
	cis-[Rh(Cl)(CO), (L ^R)] (R = Me Et CH, Ph Ph or p-An)	19 62 75
	$[Rh(X)(CO)(L^{Tol-p})(PPh_3)] (X = [BH_4] \text{ or } [ClO_4])$	62
	trans-IRh(CO)(L^{R})(PPh ₂), X (R = Me and X = Cl. Br. or I:	
	X = Cl and $R = Et$. Ph. p-Tol. or p-An:	
	R = p-Tol and $X = [ClO, I]$	19.62
	$cis_{I}Rh(COVI^{R})_{*}(PPh_{*})K(I)R = Me \text{ or }Ft)$	74
	$[Rb(CO)(L^R)]$. $[X (R = Me \text{ or } Et \text{ and } X = C]$	
	$\mathbf{B} = \mathbf{n} \operatorname{Tol} \operatorname{and} \mathbf{Y} = [\operatorname{CIO}]$	10 61
	$r = p = 1 \text{ or and } \mathbf{x} = [c = c_{4}]$	19,01
	$\frac{1}{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^$	10 61 62 75
	r = r = r = r = r = r	<i>(</i>)
	$\frac{\partial F}{\partial r} = \frac{\partial F}{\partial r} = $	62
	$\frac{\partial G}{\partial h} = \frac{\partial G}{\partial h} = $	02
	$\frac{\partial \mathcal{L}}{\partial t} = \frac{\partial \mathcal{L}}{\partial t} = \partial $	14
	$cis_{\rm L} Rn(COD)(L^{-1})(PPn_3) (COD)(L^{-1})(R = p-101 \text{ or } p-An)$	62
	$cis-[Kh(CH_2SiMe_3)(COD)(L^{-\infty} r)]$	62
	$[KhCl(L^{-1})_3]$	61, 77
	$[\mathbf{RhCl}(\mathbf{L}^{2n_2n_3})_3]$	61, 78
	$cis_{Rh}(Cl)(COD)(L^*)](L^* = MeL^* Me_{Cu}, Bu'L^* Me_{Cu},$	60 63
	DuL, DuL , PL , $UCyL$) (none (Db/(C)/(I * (DDb)) (I * -) (at * Me,Me D., it * Me,Me	00, 03
	$Bu^{i}L^{Me,Et}, Bu^{i}L^{*Et,Et}, Bu^{i}L^{*CH_2Ph,CH_2Ph}, Bu^{i}L^{*Me,Tol-p},$	
	$PL^{\star Me}$, $L^{CH_2R^{\star}}$ or $L^{CH_2R^{\star\prime}}$)	56, 60, 63
	$[Rh(Cl)(CO)(Bu^{i}L^{\star Et,Et})(L)] (L = Bu^{i}L^{\star Et,Et} \text{ or } PPh_{2})$	56, 60, 63
	[Rh(COD)(L ^{cyclam})][RhCl ₂ (COD)]	53
DLIII		76
ι×μ		75 76
	$[\mathbf{E}_{1}] = [\mathbf{E}_{1}] = [\mathbf{E}_{1}]$	13 60
		U 2

Table 1 (continued)

<u>M"</u>	Complex	Ref.
Ir ¹	$[Ir(CO)(L^{Me})_{3}][BF_{4}]$	20
	$[Ir(CO)(L^{Me})(PPh_3)_2][BF_4]$	20
	[Ir(CO)(L ^{CH₂Ph}) ₂ (PPh ₃)][BF ₄]	75
	trans- $[Ir(X)(CO)(L^{CH_2Ph})_2](X = Cl \text{ or } I)$	75
	trans-[$\ln(Cl)(L^{CH_2Ph})_2(N_2)$]	75
	trans- $[Ir(Me)(CO)(L^{Me})_2]$	78
	$[Ir(Cl)(L^{CH_2Ph})_3]$	78
Ir ^{III}	$[Ir(Cl)_2(X)(CO)(L^{CH_2Ph})_2](X = Cl, H, HgCl, or TCNE)$	75
	$[Ir(Cl)(I)(Me)(CO)(L^{CH_2Ph})_2]$	75
	$[Ir(Cl)_3(L^H)(PPh_3)_2]$	70
	$[Ir(L^{Ar})_{3}] (Ar = p-Tol \text{ or } p-An)$	59
	$[Ir(L^{Tol-p})_2(L^{Tol-p})]X (X = Cl \text{ or } [BPh_4]$	59
Ni ⁰	$[Ni(CO)_3(L^R)]$ (R = Me or Et)	35
	$[Ni(CO)_2(L^R)_2]$ (R = Me or Et)	35
	$[Ni(CO)_2(L^{Me})(PR_3)] (R = Ph \text{ or } Cy)$	35
	$[Ni(CO)_2(L^{Et})(PPh_3)]$	35
	$[Ni(Cl)(L^{Et})_2(NO)]$	41
	$[Ni(Br)(L^{CH_2Ph})_2(NO)]$	41
Ni ^I	$[Ni{CH(SiMe_3)_2}(L^R)_2](R = Et \text{ or } CH_2Ph)$	79
	$[Ni(CH_2SiMe_3)(L^{Et})_2]$	79
	$[Ni(CH_2SiMe_3)(L^{Me})(PCy_3)]$	79
	$[Ni(\eta - C_3H_5)(L^{Me})_2]$	79
Ni ^{II}	trans-[Ni(Cl)(L^{Me}) ₃][BF ₄]	20
	$cis-[Ni(X)_2(L^{Me})_2]$ (X = Cl, Br, or I)	35
	trans-[Ni(Cl) ₂ ($L^{\mathbb{R}}$) ₂] ($\mathbb{R} = Me \text{ or } CH_2Ph$)	35
	$cis-[Ni(I)_2(L^{Me})(PPh_3)]$	35
	$[Ni(NO_3)_2(L^{Me})_2]$	35
	$[Ni(Br)(\eta-C_3H_5)(L^{Me})]$	76
	$[Ni(\eta - C_3H_5)(L^{Me})_2]Br$	76
Pd ¹¹	trans-[Pd(Cl)(L^{Me})(PEt ₃) ₂](BF ₄]	20
	cis- or trans- $[Pd(Cl)_2(L^{Ph})(PR_3)]$ (R = Et or Bu)	16, 17, 22
	cis-[Pd(Br) ₂ (L ^{Ph})(PR ₃)] (R = Et or Bu)	16, 17
	$trans-[Pd(Br)_2(L^{rn})(PEt_3)]$	16
	cis-[Pd(Cl) ₂ (L ^{Me})(PR ₃)] (R = Et or Bu)	16, 17, 22
	$cis-[Pd(Cl)_2(L_S^{Me})(PR_3)]$ (R = Et or Bu)	16, 17, 22
	$cis-[Pd(Ar)(X)(L^{Ph})]$ (Ar = $o-C_6H_4[C(R)=NOH]$	
	$(\mathbf{R} = \mathbf{M}\mathbf{e} \text{ or } \mathbf{P}\mathbf{h})$ or $o - C_{\mathbf{g}} \mathbf{H}_{4}[\mathbf{C}\mathbf{H}_{2}\mathbf{N}\mathbf{M}\mathbf{e}_{2}]$	85
	cis-[Pd(Ar)(L ^{Ph})(PPh ₃)][ClO ₄] (Ar as above)	85
	$cis-[{Pd(\mu-X)(L^{Ph})}_2](X = Cl, Br, or OCOMe)$	71
	cis-[Pd(X)(L ^{Ph})] (X = acac or Cl, L'	
	$[L' = 4 - MeC_5H_4N \text{ or } P(OPr^1)_3]$	71
Pt ^{II}	cis- or trans-[Pt(Cl) ₂ (L)(L ^R)] (R = Me, CH ₂ Ph, Ph, or L_S^{Me} ;	
	$L = PEt_3$, PPr_3 , PBu_3 , $AsEt_3$, or PMe_2Ph)	16, 17, 18, 22, 72
	cis- or trans-[Pt(Br) ₂ (L ^K)(PEt ₃)] (R = Me or Ph, or L ^K = L ^{Me} _S)	16, 17, 18, 22
	$trans-[Pt(Me)_2(L)(L^{Me})](L = PEt_3 \text{ or } AsEt_3)$	16, 17, 18
	cis-[Pt(Me) ₂ (L)(L ^{Me})] (L = PEt ₃ or PPh ₃)	20
	$[\mathbf{r}((\mathbf{X})(\mathbf{L}^{(m)})_3][\mathbf{B}\mathbf{r}_4](\mathbf{X} = \mathbf{H} \text{ or } \mathbf{U})$	20
	$c_{1} c_{1} c_{1$	20
	[F ((刀 - いっぽっ)(い)スレ ~ 八 F F II 3)] cie_{[Di(m ¹ _C H) X] Me\ (DDb))Y (Y = C) ~ (DE)\	20
	$c_{in} [D_{i}(\mathbf{R}), (\mathbf{I}^{E_{i}}), (\mathbf{R}) = 2 \mathbf{F}_{i} (\mathbf{R}), (\mathbf{R}) = \mathbf{R}_{i} (\mathbf{R})$	29
	$cis_{1}e_{1}(x_{2}) = (1, 1)$	76
	$cis-[Pt(Cl)_2(L^{CH_2Ph})_2]$	76

Table 1 (continued)

M"	Complex	Ref.	•
Au ^I	$[Au(L^{Me})_2]X (X = Cl \text{ or } [BF_4])$	20	
Hg ^{II}	$[Hg(L^{Ph})_2]X (X = Cl \text{ or } [ClO_4])$	66, 67	

(hard) electrophilic carbene, and behave as C_{carb} -centred nucleophiles (e.g., in Wittig-type reactions). These features may be rationalised in terms of resonance structures such as X and XI. A class (i) complex may be regarded as having either or both of X and Y in I as lone-pair possessing, most typically an amino or alkoxy group, but also including halide or alkanethiolate; the first chlorocarbene-metal complexes were derivatives of Cr^0 , Mn^I , or Rh^{III} [24].

The complex $[Cr(CO)_5(L^{Me})]$ (XII), a typical electron-rich alkene-derived metal complex, could be classified as of type (i), from X-ray and ¹³C NMR or IR $\nu(CN_2)$ data. However, in their chemical behaviour this and related complexes

(Table 1) are quite distinctive, the M-C_{carb} bond being generally extraordinarily inert and rigid (high barrier to rotation about the M-C_{carb} bond [19]). This is attributable to a combination of (a) the chelate effect, (b) steric constraints (e.g., short non-bonding R/CO contacts for XII), making nucleophilic substitution at C_{carb} or L^R displacement at the metal energetically unfavourable, and (c) partial M:-C_{carb} double-bond character. Thus the complexes of Table 1 form a distinctive class, which we might label (iii) in the context of (i) and (ii) above.

The general synthetic route to electron-rich alkenes such as II involves distilling the appropriate diamine $RNH(CH_2)_nNHR$ (R = primary alkyl or unhindered aryl) with the dimethylacetal of N, N-dimethylformamide, eq. 1; the equilibrium is driven to the right by continuous removal by distillation of MeOH and Me₂NH [4]. More recent work (Section III) reveals two intermediates along the pathway to II.

The enetetramines II are electron-rich (first ionisation potential $\leq 6 \text{ eV}$) [5]. They are generally oxygen- and moisture-sensitive, being chemiluminescent in air due to formation and decay of the dioxetane XIII. They are powerful reducing agents, e.g., abstracting a chlorine atom from a chloroalkane. Electrophiles generally

cause scission of the (formal) C=C bond; e.g. a protic reagent HA usually yields the aminal XIV (e.g., A = Cl, OH, or NR'_2). The organic chemistry of electron-rich alkenes was last surveyed in 1972 [6]; this was updated in 1985 [7].

In our earlier review [1], various features relating to electron-rich alkenes II-IV and their role in coordination chemistry were identified. These are summarised in (1)-(5).

(1). The compounds L_2^R (II) were shown not to dissociate thermally or photochemically. However, in the presence of a trace of $[RhCl(PPh_3)_3]$ a facile cross-over reaction, eq. 2, was observed [8]. This provided the first model experiment for $L_2^{Ph} + L_2^{Tol-p} \rightleftharpoons 2L^{Ph} - L^{Tol-p}$ (2)

metal-catalysed alkene metathesis and led (independently of the work of Herrison and Chauvin [9a]) to the explicit proposal that the latter process involves both carbenemetal and also metallacyclic (see also ref. 9b) complexes as intermediates in the catalytic cycle.

(2). The compounds L_2^R (II) were demonstrated to have an extensive carbeneligand transition metal chemistry, in some ways analogous to that of tertiary phosphines. Stable carbenemetal complexes having 1, 2, 3, or 4 carbene ligands were reported (some from then unpublished work) for Cr^0 , Mo^0 , Mo^{II} , W^0 , W^{II} , Fe^0 , Fe^1 , Ru^0 , Ru^{II} , Rh^I , Rh^{III} , Ir^I , Ni^{II} , Pd^{II} , Pt^{II} , Au^I , and Hg^{II} . The phosphine analogy was elaborated by drawing attention to the fact that such carbenemetal complexes were accessible by: (a) di- μ -halogenodimetal bridge splitting, or (b) displacement of either a neutral (e.g., CO, C_2H_4 , or PPh₃) or anionic (e.g., Cl^-) ligand, as exemplified in Scheme 1.

$$L_{2}^{\text{(a)} \frac{1}{2}[\{\text{Rh}(\mu\text{-Cl})(\text{CO})_{2}\}_{2}]} \text{ trans-}[\text{Rh}(\text{Cl})(\text{CO})(\text{L}^{\text{Me}})_{2}]}$$

$$L_{2}^{\text{Me}} \xrightarrow{\text{(c)} [\text{Au}(\text{Cl})(\text{PPh}_{3})]} [\text{Au}(\text{L}^{\text{Me}})_{2}]\text{Cl}} (\text{b)} [\text{Ni}(\text{Cl})_{2}(\text{PEt}_{2}\text{Ph})_{2}]} [\text{Ni}(\text{Cl})(\text{L}^{\text{Me}})_{3}]$$

Scheme 1. Some typical reactions of the electron-rich alkene L_2^{Me} (II, R = Me).

(3). In a few instances, the (formal) C=C bond of L_2^R (II) was not cleaved upon reaction with a metal complex, and evidence was presented for the existence of an N, N''-chelate complex such as XV. In other cases, proton abstraction from solvent or a metal hydride was reported, e.g., in the formation of $[L^{Me}-H][Cr(\eta-C_5H_5)(CO)_3]$ from L_2^{Me} and either $[{Cr(\eta-C_5H_5)(CO)_3}]_2]$ or $[Cr(H)(\eta-C_5H_5)(CO)_3]$.

(4). X-Ray data on cis- and trans-[Pt(Cl)₂(L^{Ph})(PEt₃)] [13,16,72] and trans-[Rh(L^{Me}){N=C(CF₃)₂}(PPh₃)₂] [12] showed that (a) the M-C_{carb} bond was not particularly short, indicating that the M::C_{carb} bond has relatively little π -character, (b) the five-membered L^{R} ring was almost orthogonal to the d^{8} metal plane; and (c) the trans-influence in the above Pt^{II} complexes was $L^{Ph} \approx PEt_3 > Cl^-$. It was concluded that the L^{R} ligand is a good σ -donor but a poor π -acceptor.

(5). Spectroscopic data of diagnostic value for carbenemetal complexes derived from L_2^R (II) included (a) the $\nu_{asym}(CN_2)$ IR band at 1480–1520 cm⁻¹, and (b) the ¹³C NMR chemical shift for C_{carb} at ca. 200 ppm (as in a carbenium ion) [18].

Our work on carbenemetal complexes has thus far been published in (i) 35 full papers [10], (ii) 3 reviews [1,11], and (iii) 25 preliminary communications. The 1975 review [1] included references to 9 articles (and an additional paper [12] from another series) of type (i) and 9 of type (iii).

II. Results from publications 1975–1988

A. Enetetramines: general considerations

As indicated in eq. 1, the exobicyclic electron-rich alkenes L_2^R (II) or $L_2'^R$ (IV) are conveniently prepared from CH(OMe)₂NMe₂ and the diamine RN(H)(CH₂)_nNHR (n = 2 or 3). Two developments are noteworthy. They relate to the synthesis of analogues in which the new feature is that the alkene is either (i) endotetracyclic (V) [53], or (ii) optically active VI-IX [56,60,63]. As for (i), the polyamine precursor was the nitrogen macrocycle cyclam (XVI).

Regarding (ii), the ultimate chiral starting material was an (S)- α -aminoacid (alanine, leucine, or proline), an appropriate terpene ((+)-3-pinanecarboxylic acid (R*COOH, cf. VIIIa) or (-)-*cis*-myrtanylamine (R*'CH₂NH₂, cf. VIIIb)), or (+)-or (-)-*trans*-1,2-diaminocyclohexane. A typical procedure is illustrated in Scheme 2

Scheme 2. Synthetic sequence to the enetetramine $[PL^{*Me}]_2$ (VII) from (S)-proline methyl ester. Reagents and conditions: (i), MeNH₂, EtOH, 20°C, 7 d; (ii) Li[AlH₄], THF, reflux, 24 h; (iii) CH(OMe)₂NMe₂, 90°C, 1 h, distillation.

[63]; particular care was required to ensure no loss of optical integrity during the step leading to the α -aminocarboxylic acid amide.

The molecular structure of L_2^{Ph} (II, R = Ph) has been solved by single crystal X-ray diffraction, Fig. 1 [73]. The molecule has a non-planar geometry of approximate C_{2h} point-group symmetry. This minimises steric strain between vicinal phenyl rings. There is only a small tetrahedral distortion at the nitrogen and sp^2 carbon atoms. It is caused mainly by (i) rotation about the N- C_{sp^2} bond to bring the ring and the phenyl C atoms on opposite sides of the C=C mean plane by equivalent amounts for all four N atoms, and (ii) a rotation about each N-phenyl bond.

Fig. 1 [73]. Molecular stereochemistry of L^{Ph}₂ viewed perpendicular to the main plane of the alkene.

(XVIII) {abbreviated as $[RuCl(L^{Tol-p})(PPh_3)_2]$ }

The enetetramines II–IX have a rich coordination chemistry. Seven types of behaviour have been identified. The most ubiquitous is their ability to generate a wide range of *carbenemetal complexes* (I), Table 1. They are able to function as *bis(heteroatom)-centred ligands* without undergoing C=C bond scission, cf. XV. They can act as *carbenoids*, not only in the context of their organic chemistry (cf. XIV), but also in C_{carb}–C bond-formation involving a metal-coordinated alkyne to yield the X-ray characterised compound XVII, eq. 2 [42]. They have a significant role as *reducing agents*, and sometimes concomitantly behave as *bases*, e.g., in forming $[L_2^R]Cl_2$ or $[L^RCl]Cl$ with a chlorometal substrate, as in eq. 3. They may participate in an *orthometallation* reaction, e.g., the formation of $[Ru(Cl)(L^{Tol-p})(PPh_3)_2]$ (XVIII), eq. (3) [28,46]. Finally, in a formal sense, they may behave as *oxidising agents*, as in the conversion of the iridium(I) precursor $[{Ir(\mu-Cl)(COD)}_2]$ into the Ir^{III} cyclometallated complex $[Ir(L^{Tol-p})_3]$ [59].

B. Enetetramines as reducing agents for organometallic or coordination compounds

Irradiation of a bulky Group 14 element halide Y_nMCl in n-hexane or toluene with an electron-rich alkene L_2^{Me} , L_2^{Et} , or $C_2(NMe_2)_4$ provides a convenient method for the generation of the appropriate element-centred radical MY_n , eq. 4 and 5 (e.g., $Y_nMHal = R_3CCl$, R_3SiCl , $(R_2CH)_3GeCl$, or $(R_2CH)_3SnCl$; $R = SiMe_3$) [25]. The advantages of the method are that (i) the yields are quantitative; (ii) separation is easily accomplished, the chloride by-product being the only insoluble component of the reaction mixture; and (iii) the use of one of the above solvents enables the reaction to be carried out at low temperature (e.g., -70° C) by in situ photolysis in the cavity of an ESR spectrometer, facilitating characterisation of the radical (see also ref. 33). The less electron-rich alkenes L_2^{Ph} or $C_2(SMe)_4$ were ineffective; for L_2^{Ph} this may have been due to its hydrocarbon-insolubility.

$$4Y_nM-Hal + L_2^R \xrightarrow{n\nu} 4MY_n + 2[L^R-Hal]Hal \downarrow$$
(4)

$$2Y_nM-Hal + C_2(NMe_2)_4 \xrightarrow{h\nu} 2\dot{M}Y_n + [C_2(NMe_2)_4]Hal_2\downarrow$$
(5)

The operative reducing agent may be the triplet alkene. Irradiation of L_2^{Me} , L_2^{Et} , or $C_2(NMe_2)_4$ (but not L_2^{Ph}) in C_6H_{14} or PhMe gave a weak broad ESR signal, g_{av} 2.0033 [25].

The persistent (at 20°C) radical $\dot{Sn}(CHR_2)_3$ (R = SiMe₃) was also obtained from (R₂CH)₂(R')SnX (R'X = PrⁱCl, Bu^tCl, MeBr, EtBr, Bu^tBr, MeI, BuⁿI, or C₅H₅I), presumably by disproportionation of the transient precursor $\dot{Sn}(R')(CHR_2)_2$ [25].

Similar reductions have been carried out on (i) triaryl-silyl, -germyl, or -stannyl chlorides [51], and (ii) dialkyl- or bis(diamido)-phosphorus(III) or -arsenic(III) chlorides [26,52], generating the persistent radicals MAr₃ (M = Si, Ge, or Sn; Ar = $C_6H_3Me_2$ -2,6 or $C_6H_2Me_3$ -2,4,6), E(CHR₂)₂ or E(NR₂)₂ (E = P or As, R = SiMe₃). Using a less bulky Ge^{IV} chloride, the transient germanium-centred radical could be spin-trapped as the nitroxide \equiv GeCH(Ph)N(O)Bu^t, by carrying out the reductive photolysis in the presence of the nitrone PhCH=N(Bu^t)O [39].

Related mild reductions of some other phosphorus(III or V) chlorides have been examined. From R_2PCl and L_2^{Et} without irradiation, the diphosphine R_2P-PR_2 was obtained in high yield for $R = Bu^t$, C_6H_{11} , Ph, or $C_6H_2Bu^t_3$ -2,4,6; whereas under

Scheme 3 [31]. Molybdenum(0) complexes derived from an enetetramine (II). (a) $C_6H_{11}Me$, 100 °C. (b) Decalin, 100–120 °C. (c) $h\nu$, Me₂CO, 25 °C. (d) CHCl₃, 25 °C. (e) C_6H_6 , 25 °C. (f) C_6H_{14} , 25 °C.

similar conditions RPCl₂ yielded the cyclopolyphosphine (PR)_n for R = Bu^t (n = 4) or Ph (n = 4 (55%) and n = 5 (45%)) [64]. ArPCl₂ gave either (PArCl)₂ or trans-ArP=PAr (Ar = C₆H₂Bu^t₃-2,4,6), depending on the amount of L^{Et}₂ employed [64]. Irradiation of ArP(Cl)X and a deficiency of L^{Me}₂ in toluene at 25°C gave 2P(Ar)X + [L^{Me}-Cl]Cl; the P^{II} radical was characterized by ESR for X = OBu^t, SPrⁿ, SBu^t, NR₂, CHR₂, Ph, or OAr (R = SiMe₃) [58]. Finally, similar photolysis of Ar₂P(=O)Cl with L^{Me}₂ yielded PAr₂(=O) and PAr₂, the P^{II} species presumably being formed by L^{Me}₂ reduction of the P^{IV} precursor [58].

Facile chlorine atom-abstraction from a transition metal chloride and an enetetramine II has been observed for (i) $[Zr(\eta-C_5H_5)_2(Cl)(CHR_2)]$ and L_2^{Et} in THF, PhMe, or Et₂O, to yield by photolysis $[Zr(\eta-C_5H_5)_2(CHR_2)(\eta^2-N_2)]$ (if carried out under N₂) [37,45]; (ii) $[Ru(Cl)_3(NO)(PPh_3)_2]$ and L_2^R (R = Me, Et, or CH₂Ph), to furnish *trans*-[Ru(Cl)(NO)₂(PPh₃)] [41]; (iii) *mer*-[Os(Cl)₃(PBuⁿ₂Ph)₂] and L_2^{Me} , to give *trans*-[Os(Cl)₂(L^{Me})₄] via $[Os(Cl)_2(PBuⁿ_2Ph)_3]$ [40]; and (iv) [Ru(Cl)₂(NO)(PPh₃)₂] and L_2^R , to afford $[Ru(L^{Me})_4(NO)]Cl$ or $[Ru(Cl)(L^{CH}2^{Ph})_2$ -(NO)₂] [41].

Finally, hydrogen atom-abstraction from $[Mo(H)(\eta-C_5H_5)(CO)_3]$ or electrontransfer from $[\{Mo(\eta-C_5H_5)(CO)_3\}_2]$ and L_2^{Me} gave the reduction products $[L^{Me}-H][Mo(\eta-C_5H_5)(CO)_3]$ or $[L_2^{Me}][Mo(\eta-C_5H_5)(CO)_3]_2$, respectively [29,31], Scheme 3.

C. Enetetramines as precursors for carbenemetal complexes I

Some typical reactions of the enetetramines II and IV leading to carbenemetal complexes I are illustrated in Schemes 3–6. The reaction types featured include for Scheme 3: nucleophilic displacement at Mo⁰ of CO by L^R (denoted as L^R/CO), isomerisation ($cis \Rightarrow trans$), hydrogen atom-abstraction, and electron-transfer [31]; for Scheme 4, the following displacements at Ru^{II} or Os^{II}: L^R/PPh₃, L/L^R [L = CO, py, or P(OMe)₃, I⁻/Cl⁻, Me⁻/Cl⁻, py/Cl⁻, or PF₃/Cl⁻], reduction (Os^{III} \rightarrow Os^{II}, and L^R addition or elimination reactions [40]; for Scheme 5, the following displacements at Ru⁰, Os⁰, or Ni^{II}: L^R/PPh₃, CO/NO, or NO/Cl, reduction (Os^{III} \rightarrow Os^{II}), oxidation (Ru⁰ \rightarrow Ru^{II}, or Os⁰ \rightarrow Os^{II}), and CO addition [41]; and for Scheme 6, di- μ -chlorodirhodium(I) bridge-splitting by L^R₂; the following displacements at Rh^I: X⁻/Cl⁻ (X = CH₂SiMe₃, [ClO₄], or [NO₃]), L/[ClO₄]⁻ (L = CO or PPh₃), (L)₂/COD (L = PPh₃ or CO), or CO/PPh₃; and Rh^I \rightarrow Rh^{III} oxidations with HCl, [(Me₂N)CHCl]Cl, or C₂(CN)₄ as oxidant [62].

The mechanism of carbenemetal formation from an electron-rich alkene II is unlikely to involve trapping of a free carbene. From *cis*-[Mo(norbornadiene)(CO)₄] and L_2^{Me} , the N, N"-metal complex *cis*-[Mo(CO)₄(L_2^{Me})] (XV) has been isolated and X-ray-characterised [23,29,34]. Compound XV was converted into *cis*-[Mo(CO)₄(L^{Me})₂]. Using differential scanning calorimetry, this transformation was shown to be smooth at 140 °C in the solid state, obeying a first order rate law [23,34]. Heating XV in toluene at 110 °C for 15 min gave [Mo(CO)₅(L^{Me})]. Similar heteroatom complexes to XV, namely *cis*-[M(CO)₄(LL)₂] (M = Cr or Mo) were obtained for LL = C₂(NMe₂)₄ [23,44]. [S(CH₂)₂SC₂, or C₂(SEt)₄ [43], but these did not yield carbenemetal complexes upon heating; C₂(SEt)₄ and [{Pt(μ -Cl)(Cl)(PEt₃)}₂] gave XIX [44].

A plausible mechanism for $[M(CO)_5(L^{Me})]$ formation from $[M(CO)_6]$ and L_2^{Me} (M = Cr, Mo, or W) is shown in Scheme 7 [34].

 $[Ru(CI)_3(NO)(PPh_3)_2]$, toluene, 25°C. (c) Excess of L_2^R toluene, 110°C. (d) CO, CH_2CI_2 , 25°C. (e) AgX (X = [BF_4] or [CIO_4]), CH_2CI_2 , 25°C. (f) [Ru(NO)₂(PPh₃)₂], toluene, 110° C. (g) [Os(Cl)₃(NO)(PPh₃)₂], xylene, 140° C. (h) [Os(Cl)(NO)(PPh₃)₂], prepared in situ from [Os(Cl)₃(NO)(PPh₃)₂] + L^{Me}₂, xylene, Scheme 5 [41]. Synthetic routes to and reactions of carbenenitrosyl-ruthenium, -osmium, and -nickel complexes. (a) [Ru(Cl)(NO)(PPh₃)₂], toluene, 110°C. (b) 140°C; and then excess of L2^e, xylene, 140°C. (i) Ag[BF₄], CH₂Cl₂, 25°C. (j) CO, toluene, 25°C. (k) MeI, toluene, 40°C. (l) PhCH₂Cl, toluene, 25°C. (m) I₂, CH₂Cl₂, 25° C. (n) Br₂, CH₂Cl₂, 10° C. (o) [Ni(X)(NO)(PPh₃)₂], toluene, 100° C.

Scheme 6 [62]. Routes to enceteramine-derived monocarbenechodium(I) complexes from $[{Rh}(\mu-CI)(COD)]_2]$. (a) $\frac{1}{2}L_R^R$ (R = alkyl). (b) C_6H_6 , 70°C. (c) Xylene, 140°C. (d) $\frac{1}{2}L_R^R$ (R = aryl). (e) C_6H_6 , 25°C. (f) Li[CH₂SiMe₃], (g) CO. (h) CHCI₃, 25°C. (i) Ag[CIO₄]. (j) CH₂CI₂, 25°C. (k) PPh₃. (l) Ag[NO₃]. (m) Me₂CO, H₂O, 25°C. (n) CO trans to CI⁻.

Scheme 7 [34]. Proposed pathway to $[M(CO)_5(L^R)]$ (M = Cr, Mo, or W).

The enetetramine $L_2^{\prime Me}$ (IV) was less reactive than the five-membered analogue L_2^{Me} (II); for example $L^{\prime Me}$ -Cr⁰ complexes, unlike L^{Me} -Cr⁰ species, proved to be inaccessible [34]. Reactivity was explained as largely determined by a close Me \cdots Me contact, d in XX; assuming reasonable bond lengths and planarity at C_2N_4 , d is 1.29 Å for $C_2(NMe_2)_4$ or $L_2^{\prime Me}$ but 1.63 Å for L_2^{Me} ; hence in the former two, the access by the metal to the sp^2 -C is less easy than for L_2^{Me} .

Attempts have been made to prepare carbenemetal complexes in situ from a suitable metal substrate and the precursors (eq. 1) of an enetetramine. Thus, from $[Mo(CO)_6]$, $CH(OMe)_2NMe_2$, and $RN(H)(CH_2)_2NHR'$, *cis*- $[Mo(CO)_4(L^R)_2]$ and $[Mo(CO)_5(L^R)]$ were obtained when R = R' = Me or CH_2Ph ; but when R = R' = Bu', the product was *cis*- $[Mo(CO)_4 \{Bu'N(H)(CH_2)_2NHBu'\}]$ [29]. If either or both of R and R' was H, then the product was the 2-imidazolinemetal complex $[Mo(CO)_5 \{N=CHN(R')CH_2CH_2\}]$ (R' = H or Et) [29].

Scheme 8 [32] (for k, see [10]). Some reactions of mono- and bis-carbene-molybdenum(0) and -tungsten(0) complexes with dihalogens. (a) Et₂O, -10°C. (b) I₂. (c) Cl_2 , CCl_4 , $-10^{\circ}C$. (d) HBr, C_6H_6 , $5^{\circ}C$. (e) Br_2 . (f) CH_2Cl_2 . (g) $-20^{\circ}C$. (h) $< -30^{\circ}C$. (j) $< 30^{\circ}C$. (k) $Ag(OSO_2CF_3)$, THF, reflux, 1 h [10].

Two complexes, $[Ru(Cl)_2(CO)(L^H)(PPh_3)_2]$ [69] and $[Ir(Cl)_3(L^H)(PPh_3)_2]$, [70] having ligated L^H have been obtained from $(H_2NCH_2)_2$ and the appropriate dichlorocarbenemetal precursor.

The telluroureachromium(0) complex $[Cr(CO)_5(TeL^{Et})]$ was a source of $[Cr(CO)_5(L^{Et})]$, by employing a toluene solution in a slow dark reaction at 20 °C or, more quickly, by photolysis or treatment with mercury [48].

D. Reactions of enetetramine-derived carbenemetal complexes

In Section II. C various types of reactions of carbenemetal complexes derived from electron-rich alkenes L^{R_2} (II) and L'^{R_2} (IV) were identified, see also Schemes 3–6. Some of these require further comment.

The $M^{n+} \rightarrow M^{(n+2)^+}$ oxidation reactions involved one of the following reagents $Ag[ClO_4]$, $Ag[BF_4]$, MeI, PhCH₂Cl, HBr, Br₂, or I₂; further illustrations for $M^0 \rightarrow M^{II}$ (M = Mo or W) conversions are in Scheme 8 [32,66]. Examples of one-electron oxidation are illustrated for the Fe⁰ \rightarrow Fe^I system in Scheme 9 [55]. The reaction of $[Co(\eta-C_5H_5)(CO)(L^{Me})]$ with Ph₂S₂ yielded $[Co(\eta-C_5H_5)(SPh)-(L^{Me})]$ [68].

The carbene-chromium(I) [47] and -iron(I) (low spin d^7) [30,55] (Scheme 9) systems provided the first examples of paramagnetic carbenemetal complexes to be stable at ambient temperature, including [{Fe(CO)₃(L^{Me})}₂(μ -dppe)][BF₄]₂ (dppe = Ph₂PCH₂CH₂PPh₂) (2 independent low spin d^7 Fe^I centres) [30,55] and fac-[Cr(CO)₃(dmpe)(L^{Et})][BF₄] [47]. These were also the first stable Cr^I and Fe^I organometallic compounds. A typical Cr^I synthesis is shown in eq. 6 [47]. ESR spectra gave information on structure (the Fe^I complexes have distorted square pyramidal geometry) and stereochemistry; the g values and hyperfine coupling constants indicated that the unpaired electron was only partially metal-centred, with L^{Me} a better π -acceptor of electron-density than PR₃ [55]. Cyclic voltammetry showed that reversible 1-electron-oxidation of [Fe(CO)₃(L^{Me})(PPh₃)] was facile in CH₂Cl₂ using [NBuⁿ₄][BF₄] as supporting electrolyte ($E_{1/2}$ 0.12 V); for [Fe(CO)₂(L^{Me})(PPh₃)₂][BF₄] under similar conditions, the 1-electron-reduction showed that $E_{1/2}$ -0.50 V [55].

The *isomerisations* of eq. 7 [29,31,32,54] and 8 [40] have been studied (M = Mo or W and R = Me or Et). Using diethyl phthalate as solvent (chosen for its involatility), differential scanning calorimetry showed that the thermal *trans*- to *cis*-isomerisation of eq. 7 (M = Mo) was first order with a large negative entropy of activation, indicating an associative transition state (possibly involving the solvent) [54].

Dehydrochlorinative cyclometallation reactions (or orthometallations) (Section II.A), as in eq. 3, have been observed for Ru^{II} [28,41,46], Ir^{III} [59], and Pd^{II} [71] systems. In a single example, the *retroreaction*, eq. (9), has also been observed [59].

$$fac-\left[\operatorname{Cr}(\operatorname{CO})_{3}(\operatorname{L^{Et}})(\operatorname{dmpe})\right] \xrightarrow{\operatorname{Ag[BF_{4}], \operatorname{CH}_{2}\operatorname{Cl}_{2}, -20^{\circ}\operatorname{C}}} fac-\left[\operatorname{Cr}(\operatorname{CO})_{3}(\operatorname{L^{Et}})(\operatorname{dmpe})\right] \left[\operatorname{BF}_{4}\right] \quad (6)$$

$$cis-\left[M(CO)_{4}(L^{R})_{2}\right] \stackrel{h\nu}{\underset{heat}{\longleftrightarrow}} trans-\left[M(CO)_{4}(L^{R})_{2}\right]$$
(7)

trans-[Ru(Cl)₂(CO)(L^{Et})₃]
$$\xrightarrow{\text{heat}} cis$$
-[Ru(Cl)₂(CO)(L^{Et})₃] (8)

$$\left[\operatorname{Ir}(\mathbf{L}^{\operatorname{Tol}-p})_{3}\right] + \operatorname{HCl} \to \left[\operatorname{Ir}(\mathbf{L}^{\operatorname{Tol}-p})_{2}(\mathbf{L}^{\operatorname{Tol}-p})\right]\operatorname{Cl}$$

$$\tag{9}$$

E. Physical properties and structures of enetetramine-derived carbenemetal complexes

The asymmetric CN₂ stretching mode is a useful diagnostic guide as to the nature of the bonding in an L^R-derived metal complex. For example in carbenepoly(carbonyl)molybdenum(0) complexes or W⁰ analogues, such as $[M(CO)_5(L^R)]$ or *cis*- or *trans*- $[M(CO)_4(L^R)_2]$, it was found at 1480–1510 cm⁻¹ [31,32]. In related M^{II} complexes, such as $[Mo(X)_2(CO)_2(L^{Me})_2]$ (X = Cl, Br or I) or $[W(X)_2(CO)_4(L^{Me})]$ (X = Br or I), it was at 1500–1530 cm⁻¹ [29,32]; and in amidinium metallate(0)s, the $[L^R-H]^+$ or $[L_2^R]^{2+}$ moiety displayed a characteristic band at 1640–1710 cm⁻¹ [29]. Heteroatom donor complexes, such as *cis*- $[Mo(CO)_4(L_2^{Me}-N, N'')]$ (XV), did not absorb in the 1450–1700 cm⁻¹ range [29].

Corresponding ¹³C NMR chemical shift data showed $\delta(C_{carb})$ at 210–230 ppm for $M^{0 \text{ or II}}(L^R)_n$ complexes (M = Mo or W) [29,31], with ¹J(¹⁸³W–¹³C) at 90–130 Hz [32]. The corresponding $\delta(^{13}C_{carb})$ in metallate(0)s having the $[L^{Me}-H]^+$ or $[L_2^{Me}]^{2+}$ cation was at 185 and 149 ppm, respectively [29]. In XV it was found at 134 ppm [29].

He(I) Photoelectron spectroscopy (PES) has revealed that the first ionisation potentials of $[M(CO)_5(L^{Et})]$ [47] and $[Fe(CO)_4(L^{Me})]$ [50] corresponded to 7.12 (Cr), 6.90 (Mo), 7.02 (W), and 7.3 (Fe) eV; the value for fac- $[Cr(CO)_3(dmpe)(L^{Et})]$ was 6.70 eV [47]. PES Data for the series $[Fe(CO)_4(L)]$ ($L = L^{Me}$, CN(Me)CH=CHNMe, or $COCMe_2CMe_2O$) were recorded; the first six bands for each complex were assigned with the aid of molecular orbital calculations [50], and confirmed the view [31] that each of the carbene ligands is a good σ -donor but weak π -acceptor.

ESR Spectroscopic data on carbeneiron(I) cations led to the proposal that L^{Me} is a better π -acceptor than PR₃ [55].

Although L^{R} ligands are generally firmly bound to soft metal centres, as in Mo⁰, Ru^{II}, or Rh^I complexes, displacement of L^{R} can be achieved (e.g., see Schemes 4 and 6) if the metal environment is crowded in the substrate, as in [Ru(Cl)₂(L^{Et})₄] [40]. The L^{CH_2Ph} ligand is more labile than L^{Et} , exemplified by reactions of [Rh(Cl)(L^{R})₃] with CO in CH₂Cl₂ leading to *trans*-[Rh(Cl)(CO)(L^{CH_2Ph})₂] [61,78] or [Rh(CO)(L^{Et})₃]Cl [61].

Variable temperature ¹H NMR data on a number of carbenemetal complexes have shown that, in general, there is restricted rotation about the $M \{C_{carb} bond$, first noted for some Rh^I complexes in 1974 [19]. Activation free energies for such processes were subsequently evaluated for *cis*-[M(CO)₄(L^R)₂] (40-46 kJ mol⁻¹ for R = Me, Et, or CH₂Ph; M = Cr [31], Mo [31], or W [32]; with Cr the highest) and [W(I)₂(CO)₄(L^R)] (56 kJ mol⁻¹). For the bis(carbene)metal complexes, the behaviour may be due to concerted motions of the two carbene ligands. For the tri- or tetra-carbenemetal complexes *trans*-[Ru(Cl)₂(CO)(L^{Et})₃], *trans*-[Ru(Cl)(CO)-(L^{Me})₄]Cl, and *trans*-[Ru(Cl)(L^{Me})₄]X (X = Cl or [BF₄]), NMR distinguished the *N*and N'-methyl (or ethyl) signals, each almost planar imidazolidine ring being at an angle of ca. 45° to the RuC₄ equatorial plane in a propeller arrangement (as shown by X-ray data); the barrier to rotation was beyond the NMR range [27,40].

Other structures of stereochemical interest included $[Ni(NO_3)_2(L^{Me})_2]$, the only diamagnetic Ni^{II} nitrate [35], and the stereochemically rigid five-coordinate Ru complexes: $[Ru(Cl)(L^{Tol-p})(PEt_3)_2]$, XXI, an analogue of XVIII [28,46] (see eq. 3) (which has an agostic o-H · · · Ru contact) and $[Ru(L^{Me})_4(NO)]Cl$ (which appears to have a square pyramidal geometry with the bent NO ligand in the apical position) [41].

Single crystal X-ray data have been determined for the following compounds: cis- [31] and [54] trans-[Mo(CO)₄(L^{Me})₂], [Mo{(OS(O₂)CF₃)₂-cis}{(CO)₂-cis}{(L^{Et})₂-trans}] [66], trans-[Fe(CO)₃(L^{Me})(PEt₃)] [65], [Ru(Cl)(L^{Tol-p})(PEt₃)₂] (XXI, an analogue of XVIII) [28,46], [Ru(Cl)(CO)(L^{Tol-p})(PEt₃)₂] (XXII) [46], trans-[Ru(Cl)₂(L^{E_t})₄] [40], [Co(CO)(MeL^{*Me,Me})(NO)(PPh₃)] [56,60,63], [Co(η - $C_{5}H_{5})(SPh)(L^{Me})$ [68], *cis*-[Rh(Cl)(COD)(L^{*})] (L^{*} = CyL^{Me} or PL^{*Me,Me}) [56,60,63], *trans*-[Rh(Cl)(BuⁱL^{*Me,Me})(PPh₃)₂] [63], [*cis*-Rh(COD)(L^{cyclam})][Rh(Cl)₂(CO)₂-*cis*] [53], [Ir(L^{Tol-p})₃] (Fig. 1) [59], and [Ir(L^{Tol-p})₂(L^{Tol-p})]Cl [59]. In addition to the structural features described above, a number of further comments are in order. (i) For the complexes $[Mo(CO)_4(L^{Me})_2]$, the Mo-C_{carb} distance was shorter for the trans- (2.232(2) Å) [54] than the cis-complex (2.293(3) Å) [31], reflecting the poorer π -acceptor character of L^{Me} compared with CO [54]. (ii) In bis(carbene)metal complexes, the two imidazolidine rings are parallel, rather than perpendicular (this would correspond to a 2-metallaallene arrangement), contrary to MO predictions [31,54,76]. (iii) The bond length data for the trigonal bipyramidal complex trans- $[Fe(CO)_3(L^{Me})(PEt_3)]$ and a number of analogues trans- $[Fe(CO)_3(L)(PR_3)]$ show that the *trans*-influence of the ligand L falls in the sequence $L = CO > PR_3 > L^{Me}$ [65]. (iv) The two cyclometallated Ru^{II} complexes XXI and XXII have virtually identical structures (cf. XVIII), the agostic o-H (2.23 Å for $Ru \cdots H$) of XXI being replaced by a CO ligand in XXII [28,46]. (v) Data on the complexes XXI and XXII allow comparisons to be made between $Ru^{II}-C_{sp^2}(aryl)$ and $Ru^{II}-C_{sp^2}(carbene)$ within the same molecules, the respective distances being 2.006(8) and 1.908(5) Å for XXI and 2.125(5) and 1.989(6) Å for XXII [46]; thus, there is clearly some Ru::: C_{carb} double-bond character. (vi) The two cyclometallated Ir^{III} complexes have different conformations: *fac* for [Ir(L^{Tol-p})₃] (Fig. 3) but *mer* for [Ir(L^{Tol-p})₂(L^{Tol-p})] [59]; in the latter, there is an unexpectedly close Ir · · · C(o-aryl) contact (2.52 Å)

Fig. 2 [59]. The molecular structure of $fac-[Ir{CN(C_6H_4Me-p)(CH_2)_2NC_6H_3Me-p}_3]$ {abbreviated as $[Ir(L^{Tol-p})_3]$ }.

Fig. 3 [56,60,63]. The molecular structure of cis-[RhCl(COD)(PL*Me)].

involving the "free" $L^{\text{Tol-}p}$. (vii) The cobalt complex $[Co(CO)(MeL^{\star Me,Me})(NO)-(PPh_3)]$ is a very rare case of a chiral tetrahedral transition metal complex; however, there was disorder between the CO/NO positions [63]. (viii) The complex *cis*- $[Rh(Cl)(COD)(PL^{\star Me,Me})]$ crystallised as a single conformer in which, because of hindered rotation about the Rh C_{carb} bond, the carbene ligand was *anti* rather than *syn* to the COD ligand [63] (Fig. 3); this is a rare case of diastereoselectivity in the realm of transition metal chemistry. (ix) The only case of a chelating bis(carbene) ligand is illustrated in Fig. 4 [53].

Fig. 4 [53]. Molecular structure of the cation of $[cis-Rh(COD)(L_2^{cyclam})][Rh(Cl)_2(CO)_2-cis]$, showing important lengths (Å) and an angle.

F. Enetetramines and derived metal complexes as homogeneous catalysts

Carbenemetal complexes have catalytic activity comparable to that of related tertiary phosphinemetal analogues. Systems which have been investigated include (i) the hydrogenation of an N-acylamido acrylic ester (the dehydro precursor of an α -amino acid) [56], e.g., using XVIII or $[Ru(Cl)_2(L^{Me})(PPh_3)_2]$ as catalyst; (ii) the hydrosilylation of alkenes [56,61,83], alkynes [61], or ketones [56,61], e.g., using cis-[Rh(Cl)(COD)(L^{Me})] or trans-[Rh(Cl)(L^{Me})(PPh_3)_2], [Rh(Cl)(L^R)_3] (R = Et or CH_2Ph), (XVIII), or trans-[Ru(Cl)_2(L^{Me})_4], (iii) the cis- to trans-isomerisation of PhCH=CHSiEt₃ using trans-[Rh(Cl)(L^Me)(PPh_3)_2], (iv) Si-Si coupling, e.g., from Ph_2SiH_2 to [Ph_2Si(H)]_2 using cis-[Rh(Cl)(COD)(L^{Me})] [61] (cf. ref. 84); (v) the metathesis of octa-1,7-diene to cyclohexene and ethene using [Mo(CO)₅(L^Me)] in presence of (EtAlCl_2)_2/[NBu_4^n]Cl [86]; and (vi) the polymerisation of methyl methacrylate using cis-[M(CO)_4(L^{Me})_2] (M = Cr, Mo, or W) in conjunction with CCl₄ [86] (cf., ref. 87).

Regarding hydrosilylation, the following points are noteworthy [61]. (i) The addition of Et₃SiH to PhC=CH or PhC=CPh catalysed, by a carbenerhodium(I) complex, proceeded stereoselectively via *trans*-addition. (ii) The conversion of PhCOMe into PhCH(Me)OSiEt₃ was markedly dependent upon the nature of the *N*-substituents on the carbene ligand; thus *trans*-[Rh(Cl)(L^{Me})(PPh₃)₂] gave an almost quantitative yield after 4 h at 100 °C, whereas the L^{CH_2Ph} analogue yielded only 23% after 4 h at 120 °C. (iii) Ph₂SiH₂ was very much more reactive than Ph₃SiH in the hydrosilylation of ketones, but in some cases the dehydrogenated product, e.g., PhC(=CH₂)OSiHPh₂ from PhCOMe, was a significant byproduct. (iv)

Scheme 10 [57]. A catalytic cycle for the enetetramine-catalysed benzoin condensation.

The addition of Et_3SiH to PhC=CH in presence of $cis-[Rh(Cl)(COD)(L^{Me})]$ was significantly photocalalysed (cf., ref. 88).

The enetetramine L_2^{R} (R = Me, Et, or CH₂Ph) was shown to be an effective catalyst (at <1 molar% concentration) for the benzoin condensation in aprotic non-polar media [57]. When a stoicheiometric amount of L_2^{Ph} or L_2^{o-An} (o-An = oanisyl) was used in high dilution, the appropriate 2-aroylimidazolidine was obtained. The results were interpreted in terms of the cycle of Scheme 10; the catalytic activity was crucially dependent on the nature of the N-substituent on L_2^R (R = Me \approx Et > CH₂Ph \gg Ar), and for L_2^{Me} or L_2^{Et} compared favourably with those claimed for other catalysts such as thiamine (vitamin B₁) pyrophosphate.

III. A brief account of some unpublished data

The synthesis of (i) four endotricyclic enetetramines (XXIII) (n, m, R = 2, 2, CH₂Ph; 2, 3, CH₂Ph; 3, 2, CH₂Ph; and 2, 2, Me) [7] and (ii) three N-functionalised enetetramines II L_2^R (R = CH₂CH₂CH₂PPh₂, CH₂CH=CHMe, or CH₂CH₂CH=CH₂) [81] has been carried out. The precursors for (i) were either the appropriate tetramine HN(R)(CH₂)_nNH(CH₂)_mNH(CH₂)_nNRH and CH(OMe)₂NMe₂, or (for XXIII, n = m = 2 and R = Me) H₂N(CH₂)₂NH₂ + 2ClCH₂COCl; whereas for (ii), the procedure of eq. 1 was employed.

Two intermediates in the synthetic pathway were isolated, XXIV and XXV [81,90], each X-ray characterised [81], Scheme 11.

X-Ray structural data on $L_2^{CH_2Ph}$ [82] and compound XXIII (n = 2, m = 3, $R = CH_2Ph$) [89], showed that the nitrogen environments are pyramidal rather than planar (in contrast to the situation for L_2^{Ph} [93]). A gas electron diffraction study of L_2^{Me} [91] revealed a molecule of D_2 symmetry with a similar geometry about the nitrogen atoms to that found for $L_2^{CH_2Ph}$ in the solid state.

Quantitative cyclic voltammetry data, in THF with $[NBu_1^n][ClO_4]$ as supporting electrolyte, on a series of enetetramines II, IV (R = Me), V, XXIII (the 4 compound mentioned above) [90,92], and L_2^R ($R = (CH_2)_3PPh_2$, CH₂CH=CHMe, or (CH₂)₂CH=CH₂) [81] showed that, in general, there are reversible one-electron oxidations [90]. In situ controlled potential electrolysis in the cavity of an ESR spectrometer enabled the *radical cations* to be fully ESR-characterised [81,92]. The unpaired electron interacted with four equivalent nitrogens for L_2^R (II) but only with those protons which are attached to the carbon atoms adjacent to these nitrogen atoms.

New reactions, not involving metals, of the enetetramines L_2^R (II) have been (i) their oxidation to *chalcogeno-ureas* $L^R = E$ (E = S, Se, or Te; R = Et [7] or CH₂Ph [90]) and (ii) their *thermolysis* or *photolysis*. X-Ray data for the $L^{Et} = E$ series

Scheme 11. Intermediates, XXIV and XXV, in the synthetic pathway to the enetetramine L_2^R , and products of thermolysis or photolysis of L_2^R (II, $R = CH_2Ph$).

indicated that the C_{carb} $\stackrel{\text{\tiny w}}{=} E$ double-bond character decreased in the sequence S > Se > Te [82]. Cyclic voltammetry showed that each chalogenourea underwent an oxidation process in the range 0.2 to +1.0 V [90.92].

As for (ii), two of the compounds L_2^R underwent a [3,3]-sigmatropic rearrangement upon photolysis ($L_2^{CH_2Ph}$ [82,90]) or heating ($L_2^{CH_2CH=CHMe}$ [81]) to yield the isomer XXVI ($R = CH_2Ph = R'$; or $R = CH_2CH=CHMe$, $R' = CH(Me)CH=CH_2$, respectively). Similar benzylic sigmatropic rearrangements were observed for some of the endotricyclic enetetramines (XXIII: n = 2 = m; n = 2, m = 3; or n = 3, m = 2) [7] and one of them (XXVIII) [89], as well as XXVI ($R = CH_2Ph$) [82], have been crystallographically characterised. Heating $L_2^{CH_2Ph}$ caused debenzylation to occur to give XXVII, Scheme 11, [82,90].

New noteworthy carbenemetal complexes, with X-ray data, include $[Ru(\eta^2 - BH_4)(L^{Tol-p})(PPh_3)_2]$ [76,93], $[Rh{SnCl(NR_2)_2}(COD)(L^{Me})]$ (R = SiMe_3) [94], $[Rh(Cl)(L_3^{CH_2Ph})_3]$ and trans- $[Rh(Cl)(CO)(L^{CH_2Ph})_2]$ [78], trans- $[Pd(Cl)_2 - (L^{CH_2CH=CH_2})_2]$ (XXIX) [81,82], XXX [81,89], and XXXI [7,89]. Treatment of $[Rh(Cl)(L^{CH_2Ph})_3]$ with CO gave $[Rh(Cl)(CO)(L^{CH_2Ph})_3]$ which upon heating yielded trans- $[Rh(Cl)(CO)(L^{CH_2Ph})_2]$, whereas reaction with O₂ furnished $[Rh(Cl)(O_2) - (L^{CH_2Ph})_2]$ [78]. An interesting feature about compounds XXIX and XXX is that they were made by an in situ procedure from $RNH(CH_2)_2NHR$ (R =

CH₂CH=CH₂), CH(OMe)₂NMe₂ and either [Mo(CO)₆] or [Pd(Cl)₂(NCPh)₂], respectively; attempts to make $L^{CH_2CH=CH_2}$ according to eq. 1 failed, the product being the isomer XXVI (R = CH₂CH=CH₂) [81]. Compound XXX is significant as a rare example of a metal complex having both an alkene and a carbene ligand, a species postulated as implicated in alkene metathesis.

Acknowledgement

It has been my privilege to work with many able colleagues, named in the bibliography, whose contribution I gratefully acknowledge.

References

- 1 M.F. Lappert, J. Organomet. Chem., 100 (1975) 139.
- 2 K.H. Dötz, H. Fischer, P. Hofmann, F.R. Kreissl, U. Schubert, and K. Weiss, Transition Metal Carbene Complexes, Verlag Chemie, Weinheim, 1983.
- 3 M.A. Gallop and W.R. Roper, Adv. Organomet. Chem., 25 (1986) 121.
- 4 H.E. Winberg, J.E. Carnahan, D.D. Coffman, and M. Brown, J. Am. Chem. Soc., 87 (1965) 2055.
- 5 B. Cetinkaya, G.H. King, S.S. Krishnamurthy, M.F. Lappert, and J.B. Pedley, J. Chem. Soc., Chem. Commun., (1971) 1370.
- 6 J. Hocker and R. Merten, Angew. Chem., Int. Ed. Engl., 11 (1972) 964.
- 7 K. Spyropoulos, D. Phil. Thesis, University of Sussex, 1985.
- 8 D.J. Cardin, M.J. Doyle, and M.F. Lappert, J. Chem. Soc., Chem. Commun., (1972) 927.
- 9 (a) I.L. Herrisson and Y. Chauvin, Makromol. Chem., 141 (1970) 161; (b) C.P.C. Bradshaw, E.I. Howman, and L. Turner, J. Catal., 7 (1967) 269.
- 10 D.M. Anderson, G.S. Bristow, P.B. Hitchcock, H.A. Jasim, M.F. Lappert, and B.W. Skelton, J. Chem. Soc., Dalton Trans., (1987) 2843; and earlier papers in this series.
- 11 D.J. Cardin, B. Cetinkaya, and M.F. Lappert, Chem. Rev., 72 (1972) 545; D.J. Cardin, B. Cetinkaya, M.J. Doyle and M.F. Lappert, Chem. Soc. Rev., 2 (1973) 99.
- 12 M.J. Doyle, M.F. Lappert, G.M. McLaughlin, and J. McMeeking, J. Chem. Soc., Dalton Trans., (1974) 1494.
- 13 D.J. Cardin, B. Cetinkaya, M.F. Lappert, Lj. Manojlović-Muir, and K.W. Muir, J. Chem. Soc., Chem. Commun., (1971) 400.
- 14 D.J. Cardin, B. Cetinkaya, E. Cetinkaya, M.F. Lappert, Lj. Manojlović-Muir, and K.W. Muir, J. Organomet. Chem., 44 (1972) C59.
- 15 B. Cetinkaya, P. Dixneuf, and M.F. Lappert, J. Chem. Soc., Chem. Commun., (1973) 206.
- 16 D.J. Cardin, B. Cetinkaya, E. Cetinkaya, and M.F. Lappert, J. Chem. Soc., Dalton Trans., (1973) 514.
- 17 B. Cetinkaya, and M.F. Lappert, J. Chem. Soc., Dalton Trans., (1973) 906.
- 18 D.J. Cardin, B. Cetinkaya, E. Cetinkaya, M.F. Lappert, E.W. Randall, and E. Rosenberg, J. Chem. Soc., Dalton Trans., (1973) 1982.
- 19 M.J. Doyle and M.F. Lappert, J. Chem. Soc., Chem. Commun., (1974) 679.

- 20 B. Cetinkaya, P. Dixneuf, and M.F. Lappert, J. Chem. Soc., Dalton Trans., (1974) 1827.
- 21 D.J. Cardin, M.J. Doyle, and M.F. Lappert, J. Organomet. Chem., 65 (1974) C13.
- 22 D.J. Cardin, B. Cetinkaya, and M.F. Lappert, J. Organomet. Chem., 72 (1974) 139.
- 23 B. Cetinkaya, P.B. Hitchcock, M.F. Lappert and P.L. Pye, J. Chem. Soc., Chem. Commun., (1975) 683.
- 24 A.J. Hartshorn, M.F. Lappert, and K. Turner, J. Chem. Soc., Chem. Commun., (1975) 929.
- 25 M.J.S. Gynane and M.F. Lappert, J. Organomet. Chem., 114 (1976) C4.
- 26 M.J.S. Gynane, A. Hudson, M.F. Lappert, P.P. Power, and H. Goldwhite, J. Chem. Soc., Chem. Commun., (1976) 623.
- 27 P.B. Hitchcock, M.F. Lappert, and P.L. Pye, J. Chem. Soc., Chem. Commun., (1976) 644.
- 28 P.B. Hitchcock, M.F. Lappert, and P.L. Pye, J. Chem. Soc., Chem. Commun., (1977) 196.
- 29 M.F. Lappert and P.L. Pye, J. Less-Common Metals, 54 (1977) 191.
- 30 M.F. Lappert, J.J. MacQuitty, and P.L. Pye, J. Chem. Soc., Chem. Commun., (1977) 411.
- 31 M.F. Lappert, P.L. Pye, and G.M. McLaughlin, J. Chem. Soc., Dalton Trans., (1977) 1272.
- 32 M.F. Lappert and P.L. Pye, J. Chem. Soc., Dalton Trans., (1977) 1283.
- 33 M.J.S. Gynane, D.H. Harris, M.F. Lappert, P.P. Power, P. Rivière, and M. Rivière-Baudet, J. Chem. Soc., Dalton Trans., (1977) 2004.
- 34 P.B. Hitchcock, M.F. Lappert, and P.L. Pye, J. Chem. Soc., Dalton Trans., (1977) 2160.
- 35 M.F. Lappert and P.L. Pye, J. Chem. Soc., Dalton Trans., (1977) 2172.
- 36 M.J.S. Gynane, M.F. Lappert, P. Rivière, and M. Rivière-Baudet, J. Organomet. Chem., 142 (1977) C9.
- 37 M.J.S. Gynane, J. Jeffery, and M.F. Lappert, J. Chem. Soc., Chem. Commun., (1978) 34.
- 38 A.J. Hartshorn, M.F. Lappert and K. Turner, J. Chem. Soc., Dalton Trans., (1978) 348.
- 39 P. Rivière, S. Richelme, M. Rivière-Baudet, J. Satgé, M.J.S. Gynane, and M.F. Lappert, J. Chem. Res., (1978) 218.
- 40 P.B. Hitchcock, M.F. Lappert, and P.L. Pye, J. Chem. Soc., Dalton Trans., (1978) 826.
- 41 M.F. Lappert and P.L. Pye, J. Chem. Soc., Dalton Trans., (1978) 837.
- 42 A.J. Carty, N.J. Taylor, W.F. Smith, M.F. Lappert, and P.L. Pye, J. Chem. Soc., Chem. Commun., (1978) 1017.
- 43 M.F. Lappert, D.B. Shaw, and G.M. McLaughlin, J. Chem. Soc., Dalton Trans., (1979) 427.
- 44 B. Cetinkaya, P.B Hitchcock, M.F. Lappert, P.L. Pye, and D.B. Shaw, J. Chem. Soc., Dalton Trans., (1979) 434.
- 45 J. Jeffery, M.F. Lappert, and P.I. Riley, J. Organomet. Chem., 181 (1979) 25.
- 46 P.B. Hitchcock, M.F. Lappert, P.L. Pye, and S. Thomas, J. Chem. Soc., Dalton Trans., (1979) 1929.
- 47 M.F. Lappert, R.W. McCabe, J.J. MacQuitty, P.L. Pye, and P.I. Riley, J. Chem. Soc., Dalton Trans., (1980) 90.
- 48 M.F. Lappert, T.R. Martin, and G.M. McLaughlin, J. Chem. Soc., Chem. Commun., (1980) 635.
- 49 P.L. Pye, D. Phil. Thesis, University of Sussex, 1976.
- 50 M.C. Böhm, J. Daub, R. Gleiter, P. Hofmann, M.F. Lappert, and K. Öfele, Chem. Ber., 113 (1980) 3629.
- 51 M.J.S. Gynane, M.F. Lappert, P.I. Riley, P. Rivière, and M. Rivière-Baudet, J. Organomet. Chem., 202 (1980) 5.
- 52 M.J.S. Gynane, A. Hudson, M.F. Lappert, P.P. Power, and H. Goldwhite, J. Chem. Soc., Dalton Trans., (1980) 2428.
- 53 P.B. Hitchcock, M.F. Lappert, P. Terreros, and K.P. Wainwright, J. Chem. Soc., Chem. Commun., (1980) 1180.
- 54 M.F. Lappert, P.L. Pye, A.J. Rogers, and G.M. McLaughlin, J. Chem. Soc., Dalton Trans., (1981) 701.
- 55 M.F. Lappert, J.J. MacQuitty, and P.L. Pye, J. Chem. Soc., Dalton Trans., (1981) 1583.
- 56 M.F. Lappert, in A. Müller and E. Diemann (Eds.), Transition Metal Chemistry, Verlag Chemie, Weinheim, 1981, p. 287.
- 57 M.F. Lappert and R.K. Maskell, J. Chem. Soc., Chem. Commun., (1982) 580.
- 58 B. Cetinkaya, A. Hudson, M.F. Lappert, and H. Goldwhite, J. Chem. Soc., Chem. Commun., (1982) 609.
- 59 P.B. Hitchcock, M.F. Lappert, and P. Terreros, J. Organomet. Chem., 239 (1982) C26.
- 60 A.W. Coleman, P.B. Hitchcock, M.F. Lappert, R.K. Maskell, and J.H. Müller, J. Organomet. Chem., 250 (1983) C9.

- 61 M.F. Lappert and R.K. Maskell, J. Organomet. Chem., 264 (1984) 217.
- 62 M.J. Doyle, M.F. Lappert, P.L. Pye, and P. Terreros, J. Chem. Soc., Dalton Trans., (1984) 2355.
- 63 A.W. Coleman, P.B. Hitchcock, M.F. Lappert, R.K. Maskell, and J.H. Müller, J. Organomet. Chem., 296 (1985) 173.
- 64 H. Goldwhite, J. Kaminski, G. Millhauser, J. Ortiz, M. Vargas, L. Vertal, M.F. Lappert, and S.J. Smith, J. Organomet. Chem., 310 (1986) 21.
- 65 P.B. Hitchcock, M.F. Lappert, S.A. Thomas, A.J. Thorne, A.J. Carty, and N.J. Taylor, J. Organomet. Chem., 315 (1986) 27.
- 66 H.W. Wanzlick and H.J. Schönherr, Chem. Ber., 103 (1970) 1037.
- 67 H.W. Wanzlick and H.J. Schönherr, Angew. Chem., Int. Ed. Engl., 7 (1968) 141.
- 68 D.W. Macowber and R.D. Rogers, Organometallics, 4 (1985) 1485.
- 69 W.R. Roper and A.H. Wright, J. Organomet. Chem., 233 (1982) C55.
- 70 G.R. Clark, W.R. Roper, and A.H. Wright, J. Organomet. Chem., 236 (1982) C7.
- 71 K. Hiraki, M. Onishi, and K. Sugino, J. Organomet. Chem., 171 (1979) C50.
- 72 L. Manojlović-Muir and K.W. Muir, J. Chem. Soc., Dalton Trans., (1974) 2427.
- 73 P.B. Hitchcock, J. Chem. Soc., Dalton Trans., (1979) 1314.
- 74 M.J. Doyle, D. Phil. Thesis, University of Sussex, 1974.
- 75 D.B. Shaw, D. Phil. Thesis, University of Sussex, 1977.
- 76 A.W. Coleman, D. Phil. Thesis, University of Sussex, 1980.
- 77 R.K. Maskell, D. Phil. Thesis, University of Sussex, 1980.
- 78 B. Cetinkaya, P.B. Hitchcock, H.A. Jasim, and D.B. Shaw, unpublished work.
- 79 J.J. MacQuitty, D. Phil. Thesis, University of Sussex, 1979.
- 80 T.R. Martin, D. Phil. Thesis, University of Sussex, 1978.
- 81 J.A. Chamizo, D. Phil. Thesis, University of Sussex, 1986.
- 82 H.A. Jasim, D. Phil. Thesis, University of Sussex, 1986.
- 83 J.E. Hill and T.A. Nile, J. Organomet. Chem., 137 (1977) 293.
- 84 I. Ojima, S.-I. Inaba, T. Kogure, and Y. Nagai, J. Organomet. Chem., 55 (1973) C7.
- 85 K. Hiraki, M. Onishi, K. Sewaki, and K. Sugina, Bull. Chem. Soc. Japan, 51 (1978) 2548.
- 86 J.E. Hill and T.A. Nile, Transition Met. Chem., 3 (1978) 315.
- 87 C.H. Bamford, Ch. 3 in Reactivity, Mechanism, and Structure in Polymer Chemistry (eds. A.D. Jenkins and A. Ledwith), Wiley, New York, 1974.
- 88 R.A. Faltynek, Inorg. Chem., 20 (1981) 1357.
- 89 P.B. Hitchcock, unpublished work.
- 90 E. Cetinkaya, unpublished work.
- 91 K. Spyropoulos and M. Traetteberg, unpublished work.
- 92 K. Spyropoulos and G.K. Campbell, unpublished work.
- 93 P.B. Hitchcock and S.A. Thomas, unpublished work.
- 94 N.G. Gotts, P.B. Hitchcock, and R.S. Rowe, unpublished work.